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It is not exceptional that a sample &f random dataX;, i=1,... N contains ultrametric covariations,
namely the matrixC with matrix elementgX;X;) —(X;)(X;) is ultrametric. We define independe(aecorre-
lated “collective” observables by diagonalizing this matrix. Symmetry properties of such eigenvectors are
discussed. Often also, however, while the existence of an ultrametric tree is known, the degrees of parentage
of the data are unknown, because a random perturbation confuses the labeling of the leaves of the tree. We sort
out those observables which are more robust with respect to such labeling mis&iki&3-651X99)08612-2

PACS numbes): 87.10+¢€, 87.23—n

[. INTRODUCTION model we are studying and the relevant notations. Section Il
contains the diagonalization ¢fand lists several properties

Ultrametricity [1] is a useful concept in several fields of of its eigenvectors. Section IV investigates consequences of
data analysis. For instance, in physics, overlaps of replicasconfusion of labels™ in the sample under study and states a
for spin glasses most likely show, at low temperatures, théew theorems for minimizing the consequences of this con-
phenomenon of replica symmetry breakif®]. In biology, fusion. Section V slightly restricts the model to a case, in-
taxonomic or genetic trees may sometimes show, at leasipired by biology, where the problem of robustness can be
approximately, ultrametric covariatioi8—5]. More gener-  solved analytically. Section VI, finally, contains a discussion
ally, every time one knows that random variables are no@nd a conclusion. An Appendix briefly investigates non bi-
independent, deviations from the central limit theorem arenary ultrametricity.
very likely and may even become quite strof@5]. The
minimal precaution to be implemented is then to analyze Il. MODEL AND NOTATIONS
such likely deviations and, furthermore, to rearrange the de-
grees of freedom into independent observables. When only In the following, we consider binary trees only, as illus-
linear rearrangements are considered, a list of uncorrelatdépted by Fig. 1. Namely, the sample of degrees of freedom
observables is obtained by the diagonalization of the covacontainsN=2° elements, withG the number of “genera-
riation matrixC. (As usual, this matrix is defined by its ele- tions.” For notational simplicity, Fig. 1 shows three genera-
mentsC;; = (X;X;) —(X;)(X;), where( ) denotes the proba- tions only., G=3, and the degrees of fregdom are labeled
bilistic average with respect to the probability governing theS:t, - . .z instead ofX;,X,, ... Xg, respectively.
variablesX; .) Degreesu andv, e.g., have parentage 1, because of their

This paper is concerned with statistics in the special casgearest common ancestar, In turn, e.g., degrees and z
where any average property of each element of the sampfeave parentage 2 because of ancestoAnd so on. Ultra-
under study is the same for each element. This is an impoietricity is implemented if, whenevet; and X; have par-
tant symmetry of many practical problend%;) is a constant entagev, thenC;; depends on only, C;;=c,.

w, independent of. Moreover, we restrict our subject to  For notational convenience again, we now slightly change
those cases where the mateixs “binary ultrametric,” be-  the definition ofC, by addingu? to all its matrix elements.
cause of the additional symmetries of such matrices. Thesdamely, nowC;; =(X;X;) in the following. This adds a con-
symmetries will be reflected in special properties of the
eigenvectors, naturally. There are other ultrametricities thar
“binary” ones, but the binary scheme is not a severe restric-
tion for biological models, at least.

Such results, however, are often devalued by a lack of ¢
precise knowledge of the parentage relationships between in
dividuals. While straighfsymmetrig statistical means of in-
dividual properties across the whole sample are insensitive t
permutations between elements, measures of heterogenei
between and across subgroups of the sanffalilies, su-
perfamilies, etg. may loose significance when a proper la-
beling of the leaves of the ultrametric tree is missing. Sub-
groups become ill defined and measures of differences
between subgroups loose their relevance. There is thus _
need for “collective observables,” which minimize labeling
errors. FIG. 1. Binary tree with 3 generations. For simplicity of the

This paper is organized as follows. Section Il states thenodel, each generation has the same lifetime

r
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stantu? to all the numbers,, without changing the defini- Case G=1: N=2, and onlyP; exists. Then( reads,
tion of ultrametricity. We then assume that the degrees of
freedom are normalized according to the conditiang,
=(X?)=1. This normalization identifies covariation with
correlation. Then, for=1, and naturally fon<G, the real
numbersc, are arbitrary within the trivial constraintg,)|

<1. In the case of Fig. 1, the matr&then reads,

C= @

1 ¢
c, 1)

and the matrix of row(left) eigenvectors, completed by the

[1 ¢ C; C; C3 C3 C3 C3] corresponding eigenvalues 6fand P;, respectively, reads,
¢t 1 ¢, ¢, €3 C3 C3 C3
C2 CQ 1 Cl Cg 03 C3 C3 + 1 + 1 1+ Cl +
&= . 3
o C; C, ¢ 1 c3 c3 C3 Cj @ 1M1 -1 1-¢; — 3
3 lcg €3 €3 €3 1 ¢ C Gl
C3 C3 C3 C3 € 1 c¢cp Cp Case G=2: N=4, and nowpP, joins P;. Then
C3 C3 C3 C3 C C, 1 ¢
LC3 C3 C3 C3 C, C; € 1 1 ¢4 ¢, Co
Obviously, C is invariant under a large subgroup of the |G 1 ¢, ¢
permutation group oN=2% elements. This subgroup has Co= C, ¢ 1 ¢ (4)
“parities” as factors, in the sense that such factors are per-
mutations whose square is the identity permutatidh? C C; ¢ 1

=7. These are(i) N/2 parites P7, m=1,... N/2, that

switch the two members of ar=1 er);fgmily,” eg.P1  and the matrix of row eigenvectors, completed by the corre-
induces the exchangk;< X,, and Py induces the ex- sponding eigenvalues ¢f P; andP,, respectively, reads,
change Xy_1+ Xy, (i) N/4 parites P7, w=1,... N/4

that switch the twov=1 minifamilies of a “v<2 family,”

but without disturbing the internal order within each mini- +1 +1 +1 +1 1+cyit+2c; + +
family, e.g.,P3 induces the exchang&(X,) «(X3X,), and +1 +1 -1 -1 1+c;—2c, + -
PY* induces the exchangeX(_sXn-_2)— (Xn—1Xy), and £=| 11 1 +1 -1 1oc -
so on, until(iii) the “superparity” Pg, which exchanges, at 1
parentages, the two “superfamilies” with population num- +1 -1 -1 +1 1-¢; - -
bers 21 at inner parentage<G— 1. For Fig. 1 this reads, ®)
(stU}bE(Xl .. .XN,2)<—>(ny;)E()§N,2+1 ... Xy). The gen-
eralization to any value d& is trivial. _ _ This table of eigenvectors is obtained by a duplication of the
In order to diagonalize’ the ”‘th 1Sect|on, Sec. Ill, will - hrevious table of eigenvectors and then, as indicateBhp
take advantage of the fact th&t;,P;, ... ,Pg provide a  symmetrization and an antisymmetrization. An equivalent
complete set of labels, classifying all the eigenstates. As wiltaple of eigenvectors is
be seen in the sequel, any other list of “parities”
Pf,P;’l, ..., Pg gives the same labeling, hence we shall
use the shorter notatiaR; ,P,, ... ,Pg. +1 +1 +1 +1 1+4c3+2c, + +
To avoid confusions in the wording used by this paper, +1 +1 -1 -1 1+c;—2c, + —
we specify that three kinds of averages are conside(i¢d: &= Y1 -1 0 0 1—c B ,
probabilistic average&), governed by thécorrelated prob- 1
ability distribution which drives the set & degrees of free- 0 0 -1 +1 1-cq -
dom{X;}, (ii) statistical means, namely weighted sums of the (6)

variablesX;, and(iii) averages over permutations of the la-
belsi. As will be seen in the following, the name “observ-
able,” which we shall use for a statistical mean, should b
clear enough. The notation) should also clarify what be-
longs in (i). Finally, we retain an explicit factorN!) !
whenever permutation averaging occurs; this factor shoul
make a convenient signature foii ).

where degenerate eigenvectors are simplified, at the cost of
Gheir P, labels. This form, Eq(6), better illustrates the con-
struction of eigenvectors and eigenvalues “at lé8&lwhen
ose “at levelG—1" are known. The key of the derivation,
esides the labeling parities already mentioned, is the fact
that a matrix with constant matrix elements is essentially
null, except for its only nondegenerate eigenvector, of the
form (1,1, ...,1).
Case G=3: N=8, and nowP; comes in. FoC we refer
The following list of almost obvious results, without de- to Eq. (1). The matrix of row(left) eigenvectors, completed
tailed proofs, makes a constructive derivation of the eigenby the corresponding eigenvalues @fP,,P, and P;, re-
vectors and eigenvalues 6f spectively, reads

Ill. EIGENOBSERVABLES AND THEIR
FOURIER INTERPRETATION
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F+1 41 +1 +1 41 +1 +1 +1 1+ci+2c,+4c; + + 4T

+1 +1 +1 +1 -1 -1 -1 -1 1+c;+2c,—4c; + + -

+1 +1 -1 -1 +1 +1 -1 -1 1+c;—2c, + - 4+
+1 +1 -1 -1 -1 -1 +1 +1 1+c;—2c, + - =
&= : (7
+1 -1 +1 -1 +1 -1 +1 -1 1-¢ -+ +
+1 -1 +1 -1 -1 +1 -1 +1 1-¢; - + -
+1 -1 -1 +1 +1 -1 -1 +1 1-¢; - - +
 +1 -1 -1 +1 -1 +1 +1 -1 1-¢ - - -

This table is obtained by a duplication of the previous table of eigenvectors and then, as indicRted symmetrization and
an antisymmetrization. An equivalent table of row eigenvectors is

~+1 +1 +1 +1 +1 +1 +1 +1 1+c4+2c,+4cy; + +

+1 +1 +1 +1 -1 -1 -1 -1 1+c;+2c,—4c3 + + ~—

+1 +1 -1 -1 O 0 0 0 +ci—2c, + -

0 0 0 o +1 +1 -1 -1 1+c4—2c, + -

&= +1 -1 0 O 0 0 0 © tc, - ’ ®

0O 0 +1 -1 0 0 0 © 1-¢; -

0O 0 O 0 +1 -1 0 O© 1-¢, -

L 0 0 0O 0O 0 0 +1 -1 1-¢; - i

where degenerate eigenvectors are simplified, at the cost 6fy<3 families.” And so on, until one reachéw) the non-
their P; labels. For those eigenvectors which actually relatedegenerate eigenvalueEg=cq+ 25’;112”*10”—26*10@,

to the G=1 substructure, the simplification also erases thewith eigenvector a “one node” sequence b2 positive

P, labels. This form, Eq(8), again illustrates the construc- components followed byN/2 negative components,+({,

tion of eigenvectors and eigenvalues at le@ekhenthoseat +1 .. . +1-1-1...,—1). (v) Finally, the (fully sym-
level G—1 are known. The key of the derivation, besides themetric) vector with equal components is again a nondegen-
labeling parities, is again the fact that a matrix with constanerate eigenvector, with eigenvaliig=c,+=%_,2""Ic, .

matrix elements is essentially null, except for its only non  For the sake of definiteness and future reference, we list
degenerate eigenvector, the “fully symmetric” set of con- here the projectors which, f@ =3, define the various sub-
stant components (1,1. . ,1). spaces,

General case: N:2€. (i) The eigenvalu&,=cy—c; oc-
cursN/2 times. The corresponding eigenvectors are easy to
list if one uses the simpler form introduced by E¢®). and f+1 +1 +1 +1 +1 +1 +1 +17
(8). Namely the first of them is€1,—1,0,0...,0,0) and +1 +1 +1 +1 +1 +1 +1 +1
the other ones are deduced from this one by all the permu-
tationsP7 which exchange %=1 minifamilies.” (ii) Then +1 +1 +1 +1 +1 +1 +1 +1
the eigenvalueE,=cy+c;—2c, occurs N/4 times, with il +1 +1 +1 +1 +1 +1 +1 +1
eigenvectors the pattern+(1,+1,—1,—1,0,0...,0,0) and < Fo= 8l +1 +1 +1 +1 +1 +1 +1 +1
all the vectors induced by the exchang@%” of “v=<2
families.” (iii) In turn, the degree of degeneracy of the ei- LR R
genvalueE;=cq+c;+2c,—4cg is 2673, The correspond- +1 +1 +1 +1 +1 +1 +1 +1
ing eigenvectors derive from the patters {,+1,+1,+1, +1 +1 +1 +1 +1 +1 +1 +1

-1-1-1,-1,0,0...,0,0) by all the exchange@}{" of (9)
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r+1 —1 0 0 0 0 0 01 Two properties of this representation are then obvi@us,
1 41 0 0 0 0 0 0 except for the fully symmetric eigenvector, all the other
eigenvectors, obtained by such rearrangements in their re-
0 O +1 -1 O 0 0 0 spective degenerate eigenspace, show an equal number of
1] o 0 -1 +1 0 0 0 0 positive and negative components, and can thus be trans-
QFi=_ , formed into one another by suitable permutations of leaf la-
210 0 0 0 +1 -1 0 0 bels, and(ii) given a signature read from left to right, corre-
0 0 0 0O -1 +1 O© 0 sponding to the ordered lisP;,P,, ..., Ps, the first
0 0 0 0 0 0 +1 -1 “m_inus” sign of the signatu_re speci_fies the eigenvglue. The
existence of a representation of eigenvectors “without ze-
L O 0 0 0 0 0 -1 +1] roes,” see again, e.g., Eg&) and(7), is of importance for
(10 the next section, Sec. IV. This representation, incidentally, is
nothing but the well known set of Hadamard matri¢&s
[+1 +1 -1 -1 0 0 0 07 Such matrices can be defined by two constraifijoe made
+1 +1 -1 -1 0 0 0 o0 of orthogonal vectorslii) have matrix elements 1 only.
It must be recalled here that the present Section, Sec. I,
-1 -1 +1 +1 0 0 0 0 was dedicated to the diagonalizationffor a linear decor-
c -1 -1 +1 +1 O 0 0 0 relation of the degrees of freedoX;. It is only fitting that
Q2= 2l o 0 0 0 +1 +1 -1 -1 systematically one of the eigenvectors, the fully symmetric
pattern (1,1...,1),defines as a suitable collective observ-
c o o0 0 +1 +1 -1 -1 able, after an obvious normalization, the statistical mean
0 0 0 o -1 -1 +1 +1 > X;IN. More interesting, maybe, is the fact that the other
eigenvectors define “heterogeneity observables” of the form
L0 0 0 0 -1 -1 +1 +1, 3 1Xi— 25X . Herel andJ are complementary subsets
11 of N/2 leaf labels, and these subsets depend upon the eigen-
- - vector, naturally. Assume that closer parentage induces
A 1 ! 1 1 greater covariation, namely, thatz=c;=c,=---=cCg.
+1 +1 +1 +1 -1 -1 -1 -1 This induces an eigenvalue hierardBy<E,<---<Eg. In
+1 +1 +1 +1 -1 -1 -1 -1 so far as strong eigenvalues of the covariation matrix might
be favored, the lagbut one eigenvector thus seems to be a
QFs— 1 1 +1 +1 +1 -1 -1 -1 -1 favorite, all the more so because Es; is not degenerate.
8/-1 -1 -1 -1 +1 +1 +1 +1|° The uniqueness of this eigenvector might make the contrast,
-1 -1 -1 -1 +1 +1 +1 +1 N/2 N
~1 -1 -1 -1 +1 +1 +1 +1 Oc=2 Xi— > X, (15)
i=1 j=N/2+1
-1 -1 -1 -1 +1 +1 +1 +1

(12) between the superfamilies<G—1 a preferred statistical
] S measure of heterogeneity.

In view of their trivial “growth” block structures, the rules Letu;,, i=1,... N be the components of a “no zero”
governing th_e construction of such projectors are ObV'OUSheterogeneity eigenvector, identified by its signatureAs
Let the matrix elements of such operators be denoted byaieqd above, the knowledge fdefines also the eigenvalue
Qg,jj - The quantity E. The observable

N N
An=”21 XiQk ij X, 13 00221 Ui o X (16)
= 1=

is an observable which obviously tells how much a given sets nothing but the scalar product of the observed pattern of
of X;’s belongs to the subspace with eigenvakig. The  X;'s with the eigenvector. This scalar product has a vanish-

sum rule, ing probabilistic averagé®,)=pu=N ,u;,, since u=(X;)
G does not depend onand since the-1 components of the
eigenvector exactly compensate itsl components. In ac-

n§=:1 An=1, 14 wal measurements, deviations from this predicti@,)

=0 must, to be statistically significant, be compared with the
obtains identically. square root of the variance,

It is useful at this stage to reinstate the symmetrizations N N
and antisymmetrizations prescribed by the various parities 2
. . 0= U A XiXiHU; ,=NE. 1
PT of the problem. This alternate representation of the (O ;1 j§=:1 XXy a7
eigenvectors replaces their zeroes by eithdr or —1 and
recovers the signatures which generalize those shown bglearly, the choice of the highest eigenvdklenamely the
Egs.(5) and (7). non degeneratgg if the abovementioned hierarchy occurs,
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creates the most demanding significance threshold. In a spi@t, with eigenvalueE. The “symmetric” |Eo) being ex-

slightly analogous to that of singular value decompositionscluded, a random permutatid® of componentgdiffering

where largest eigenvalues are preferred, this choice mightom the identity actually convertdE) into a different pat-

justify a preference for the observalig; . tern P|E). Is the new pattern still an eigenstate, defining a
To summarize this section, the diagonalization of the cor{egitimate observable? A first criterion of the robustness of

relation matrix defines a Fourier analysis well suited to thq E) is thus the fluctuatioimean square deviatipn

situation created by ultrametric correlations. The modes

upon which field observations are expanded are defined by f(P|E))=(E|P Y[C—(E|P~1CP|E)]?P|E)

the eigenvectors of the correlation matrix, naturally, and the _ _

corresgponding decorrelated observables, see (E). are, =(E|P~'C*P|E)—((E|PT'CP|E))%. (19

. . . 71/2 . .
Whgn ”;“[':“p"e_d by afr;_ qbv;ouil ?hormaltltzatlonafthe a5 Indeed, a necessary and sufficient condition for eigenstates is
sociated Fourier coefficients. From the patternstdf com- .\ o <clation of this fluctuation.

ponents that have been discussed in this section, it is clear Actually, sinceP is unknown, a best choice should result

that finer structureghigh frequencies in the oscillation of the from minimizing the average dfover all permutations
+1 componenisrelate to lower eigenvalues. An observer, '

however, may resent the slight ambiguity in the information
carried by such coefficients, because most eigenvalues arE(|E))=(N") 1> [(E|P~!C2P|E)—((E|P~*CP|E))?].
degenerate, and thus the eigenvectors are not uniquely de- P (20)
fined and only the eigensubspaces are defined without ambi-
guity. There is then no difficulty in lumping together the  Consider the “no zero” representation of eigenvectors,
squares of the Fourier coefficients pertaining to each degenee again, e.g., Eq¢5) and (7). As stated earlier for this
erate eigenspace, see Efj3). More explicitly, according o Hadamard representation, given two distinct “heterogene-
Egs.(13) and (16), given all those observables,, which ity eigenvectors|E) and|u), there is always a permutation
bglong toa given degenerate subspace with eigenVglue  Q relating them,|u)=Q|E). Then, since the summations
this lumping reads, upon permutation® and permutation®®’ =QP make the

1 same summation, one finds two “indifference theorems,”

S5 2 [0P=A,. (18)

N olE(o)=E,

(N!)*lg <u|P*16P|u>=<N!>*1§ (E|(PQ)"'CPQIE)

IV. CONSEQUENCES OF LABELING CONFUSION

— 1y~ 1 r—=1 ’
The previous section, Sec. lll, achieved more than the (ND) ; (EIP"""CP'[E),

derivation of independent observablés., defined by Eq.
(16). It also found a hierarchy between them. Namely, a
sequence oX;’s can be analyzed in terms of Fourier coeffi-
cientsN~Y20_, relating to contrasts between minifamilies, F(|M>)=F(Q|E>)=(N!)7lz [(E|(PQ) *C2PQIE)
or families, ... or superfamilies. The zoology of eigenstates P

makes this statement transparent, according to the “frequen-
cies” at which the=1 components of the eigenvectors os-
cillate, or, equivalently, according to whicfdegenerate

(21)

—((E[(PQ)"'cPQIE))?]

subspaces) such eigenstates belong. Hence one may detect =(N!)_12 [(E|P'~*C?P'[E)
in the X; data fine structures pertaining to the influence of P
minifamilies, . . ., superfamilies. —((E|P""1cP'|E))?]=F(|E)). (22

How reliable is this detection based on the consideration
of such Fourier coefficients? The decorrelation has mini-These results, Eq$21) and(22), may be summarized by the
mized the rte of statistical fluctuations, indeed, but another statement that the permutation average valu@isfthe same
problem may arise, namely labeling confusion. In practicaffor a perturbedE) and for any other perturbed eigenstate
situations of sample analysis, the existence of a tree may Hed), and that the same equality is true for the fluctuation of
known to be likely, but the labeling of the tree leau#ise  C. In other words, once perturbed by an arbitrary, unknown
elements of the sample under studyeither badly known or  permutation of its components,., no heterogeneity observ-
contains at least some errors. Accordingly, there are mistakesble is preferable for robustness, whether one considers the
in the parentages between individuals. There exist non lineagxpectation value of or the corresponding fluctuation. Our
observables for measuring the sample heterogeneity, such fisst criterion, namely the approximate conversion of an
EKJ(Xi—XJ—)Z, which are as insensitive to a permutation of eigenstate into another one, therefore fails to suggest an ob-
labels as the linear meaxiX;/N. But, in the realm of linear servable more robust than the others. This failure is not too
rearrangements, once we disregard this symmetric mean obramatic, however, because, anyhow, the replacement of an
servable, perfect robustness is not available. Hence the quesigenvector by another one might induce the replacement of
tion: among the “heterogeneity” linear combinations de- an eigensubspace by another one, confusing the interpreta-
fined by the eigenvectors df, is there a preferable choice tion of information in terms of lower and higher “frequen-
when a random permutation perturbs the labeling? cies.” The question of eigensubspace robustness will be

First question, first criterionLet |E) be an eigenstate of studied later in the present section.
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Paradoxically, a non diagonal form of EQ1) states that, permutations. Under the same permutations, off diagonal
even perturbed, the eigenvectors are still eigenstates, in thmeatrix elements sample equally all the off diagonal elements
sense that the operator, of the symmetric, ultrametric, initidgl. The result, an average

eigenvalue, reads

A=(N!)‘1; P-1cP, (23) G

1
2v"1c | 2
26_1;1 ) 27

a=C0_
has vanishing off diagonal matrix elements between them.
Consider indeed again two heterogeneity eigenvedto)s
and|7), whereo and 7 denote their signatures and not just
their eigenvalues, the latter being ambiguous because of d

generacies. LaR be one of the “parities,” which make these Eq. (27). The next section, Sec. V, shows a case where it is

signature differ, for instancR| o) =|o), while R|7)=—|7). easy to locate with respect to the eigenvalues
Then, because it makes no difference whether one sums y P 9 ’

uponP or uponPR, one obtains,

To summarize this section, we found that the most robust
gbservables under labeling confusion are those whose eigen-
values are as close as possible to the nunabéefined by

V. ROBUSTNESS OF HETEROGENEITY
MEASUREMENTS IN A GENETIC MODEL
NI(7|Alo)y=>, (7|P~CP|a)= 2, (7|(PR)"'CPRo)
P P Imagine a viral epidemy in a large geographical area, di-
vided into two “subcontinents’A andB. Assume each sub-
=, (7|R"PICP|oy=— >, (7] P~1CP|o). continent to be divided into two “regions,” the regions split-
P P ting in turn into “plains” versus “mountains,” then the
(24) mountains splitting into two “valleys” while the plains
show two main “rivers basins.” And so on until “villages”
Hence, (7] Alg)=0. A similar statement holds fo€2,  and “clans” within villages, “families” within clans, etc.
naturally. Hence, “off diagonal fluctuations” also vanish. One suspects, conjectuii¢, that the virus actually splits into
Second question, second criteridlightly modifying Eq.  two distinct classes of strains and, furthermore, that a strain
(20) we now take advantage of the eigenvalue of the candimight be more specific té& while the other might pertain
date and ask: does the permutation, which perturbs the eigemore toB. One also suspects, conjectyi®, that some so-
vector, respect the eigenvalue? In other words, does the olsial structures and mechanisms within “villages” may create
servable, while disturbed, belong to the same eigensubspaeélditional contrasts and separate strains on a shorter scale.
and essentially yields a similar information? One possibleHowever, the concerned populations travel enough to make
answer lies in a minimization of the averaged square normsomewhat dubious any assessment such as *“this individual
(N ~1=p|(C—E)P|E)|2. This amounts to minimize, belongs to this subcontinent, this region, etc., this family.”
Hence, for the discovery of strains with a sufficient contrast,
is the observabl&; _ 5, X; — = . gX; significant, or should one
use a different observab _, X;— =; _ ;X; wherel andJ are
(25) complementary subsets acro&sand B? Moreover, in the
search for evidences of fine structure mechanisms under con-
Here eigenvectors are square renormalized to unity, namelgcture(ii), when a few “Fourier coefficients” turn out to be
the “no zero” representation becomes multiplied Ky 2. dominant, do they relate to a reasonably robust eigenspace?
Because we found that both tid¢ and theC terms are For this question, we consider a genetic model used ear-
indifferent to the choice of theigenvectotE), the only way lier [5] where the matrix elements 6fare most simpleg,
to minimizeg is to choose thagigenvalue Bvhich is nearest =p”. The parametep is a positive number, slightly smaller
to the numbera=(E|A|E). In the eigensubspace specified than 1. This model was used for strains of DNA, or RNA, or
by the optimalE under search, anfnormalized vector will  proteins, with individuals duplicating after a constant life-
then make an optimal observable. time T for each generation. During this lifetime, a property
To calculatea we take advantage of the huge degeneracyX= +1 of each individual drifts stochastically, in such a way
of degreeN—1=2¢—1, of A and evaluat@ with respect to  that two individualsa and b starting identical X,=X,,, at
the simplest possible relevant vector of the correspondingne of the nodes of the tree, see Fig. 1, finish with a corre-
subspace. This vector is, in the representation with zeroesation (X,X;,)=p just before duplicating. The normalization
the normalized vector 2¥41,—1,0,9 . .. ,0),with two non-  of such variablex reads, obviouslyg,=(X?)=p°=1.
vanishing components only. Thenreads The list of eigenvalues then reads

g:; [(E|P~1C?P|E)—2E(E|P1CP|E)+E?].

E;=1-p,E,=1+p—2p? ...,

1
a > [(PTXCP) 1~ (P1CP) 1, (P1CP),,

T 2Nl %

2p)m -1
+(P7ICP),,. (26) Em=1+%—p(2p)m‘l, ol

Here the numbersF(*lcP)ij are the matrix elements «f 61
under the perturbationgpermutations P. Diagonal matrix E 14 pl(2p)~ "—1] _p(2p)St 29
elements remain unchanged, and equatdpunder these ¢ 2p—-1 '
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FIG. 2. Genetic model. Plots of the average eigenvallfer
G =232 (upper full ling andG= 16 (lower full line), plots of eigen-
valuesEg (long dashed ling E, (dashed ling E; (short dashed
line) andE, (dotted ling, as functions of the mutation rate=1

—p.

while a reads

. Pl2p°-1]
ey 2

Expansions oE, anda in the vicinity of p=1 give, respec-
tively,

E,=(2"-1)(1-p)+O(1-p)?, and

—1|(1-p)+0[(1-p)?]. (30

a:

-G

FIG. 3. ForG=8, average values @ (full line curve) andO;
(dashed curve as functions of the numbeét of final transpositions
of individuals in the population. Horizontal full line: confidence
threshold(variance, see Eq17)) for Og. Dashed horizontal line:
the same foiO;.

pose data compatible with conjectuft&). For this, with
probability 25%, the pairX,; _1,X, normally generated in
this 6th generation are replaced by pairé,— 1. Such pairs,
two generations later, are meant to induce octuplets of the
foom +1,+1,+1,+1,—-1,—1,—1,—1, easily detectable by

an observabl®;, unless they have been destroyed by muta-
tions and/or population reshuffling.

Except for their identical first generations, the*Iins
differ by their random mutations along the tree, by the ran-
dom enforcement of-1,— 1 pairs at generation #6, and by
the Z random transpositions of leaves of the tree. The code
generating such runs is available upon request.

The full line curve shown in Fig. 3 plots, as a function of
Z, the value, averaged over the*lfuns, taken by the ob-

As soon as 2€ can be neglected with respect to 1, the bestservable®Og. In a transparent notation, this observable may
choice, according to the second criterion of Sec. V, correpe listed as[128+,128—-], naturally. With p=1—2.25

sponds to that integen closest to logG. This is valid, how-
ever, for values op close to 1 only. As shown by Fig. 2,
which plotsa for G=32 andG=16, with Es, E,, E3, and
E, as functions ofx=1—p, the best choice depends pn
Indeed, wherp is close to 1E; is a good approximation of
a if G=32. The same is true fdg, if G=16. Forp=0.93,
and for p=0.81, however, better approximates atre E,
andEs, respectively, ifG=32. ForG= 16, in turn,E5 coin-
cides witha if p=0.82. Forp=0.5, the best approximate of
a seems to bé,, independently frons, but such extreme

X 102, the corresponding eigenvalue and square root of the
variance (SRV) are 5.0 and 36., respectively. Then the
dashed line curve in Fig. 3 shows values taken by the sim-
plest among observablé;, namely, in the same transparent
notation again, [4+,4—,4+,4—, ..., 4+,4-] (32 se-
quences+ +++————). In order to appraise signifi-
cance, the average value 6f; must be scaled against an
SRV 6.2, coming from eigenvalue 0.15.

The robustness aP; compared to that oDg is transpar-
ent from Fig. 3. It will be noticed that the noise brought by

values ofp are not of a great practical significance. For all the random transpositions does not prevent the kind of Fou-

practical purposeq is quite close to 1.

rier analysis, brought by observablés,, from being effi-

The following figure, Fig. 3, lists the results obtained with cient a long time, since a simultaneous detection of both

10* independent runs of the model wh€n=8, namely, 256
individuals, andp=1—2.25x 10~ 2. An artificial mutation is

modes #8 and #3 is still possible wh&r=50, compared to
a population of 256 here. But beyo@d=50, average values

enforced during the first “generation,” namely, if the nota- of g, compared toN'Eg, become too small, whil&),

tions of Fig. 1 are used;=1 andX,,=—1. With such an
initial condition, which differentiates\ from B, conjecture
(i) should be observable by means®f up to some extent at

remains reliable a long way still.
Rather than using a specific eigenvector for testing robust-
ness, one could also consider, for a similar detection of con-

least, even after 7 levels of duplication and mutations, andrast(heterogeneitymodes, the projector® E» on eigensub-

after a reasonable amou#tof random transpositions of in-
dividuals at the end.

Except for this initial condition, flips=1 are random,
with probability £=3(1—p)*¥?=0.075. Generation @ — 2

=6, however, is artificially modified, in order to superim-

spaces for eackdegenerateeigenvaluek,, naturally. It is
likely that such projectors would show the same robustness,
because of their invariance groups. The present section, Sec.
V, however, already gives sufficient evidence for the hierar-
chy of robustness created by the second criterion discussed at
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the end of the previous section, Sec. IV. We retain the quegroblem is also under consideration.
tion of projector robustness for a further study. In practice, the methodology advocated by this paper
boils down to the following recipeii) When there is a rea-
sonable motivation for coding experimental observations in
V1. DISCUSSION AND CONCLUSION terms of stochastic variableX; = + 1, making the leaves of

There are two kinds of results in this paper. The first kind@n Ultrametric binary tree witt generations, decide on a set
deals with disentangling correlated degrees of freedom, ii?f Such labels according to reasonable assumptions about
order to define a set of “collective” observables, better ame-Parentage relationshipéii) Then take advantage of the fact
nable to statistical observations. The idea of correlation mathat the eigenstates and eigenprojectors of the correlation
trix diagonalization is not original, nor is new, at least for the Matrix do not dependon its matrix elements,. Obtain
representation with zerogs], the zoology of the eigenvec- €igenstates gn_d prOJe(l:g)rs from Sec. Ill. Hence, calculate the
tors and eigenvalues of ultrametric matrices. But the resultd;ourier coefficientN™*“0,,, see Eq(16). Or at least cal-
in terms of two groups of observables, the symmetric statisculate the projector expectation valuds,, see Eq.(13.
tical mean on the one hand, and a large set of heterogeneiecause of the sum rules, Eqd4) and (18), the global
observables on the other hand, are more interesting. Indedtgterogeneity of the sampled population is estimated by the
there emerges a natural hierarchy of such heterogeneity ofUmber 1-Ao. It may happen that the “heterogeneity”
servables: depending on the eigensubspace retained for th@urier coefficients orA’s clusterin two groups, namely
observable, one measures heterogeneity within “minifami-'small ones™ and “larger ones.”(iii) If so, the “larger
lies,” or “families,” etc. each scale being characterized by aones” indicate specific heterogeneities inside substructures
maximum degree of parentage, All told, this paper tells Of the sampled population. Such heterogeneities can be
that only a few selected lists af and— signs define proper trusted if the labeling is believed to be accurate. If, however,
measure&; ., X;— =, . ;X; of heterogeneity. This question is glvenG generations in the yltrametrlc grap_h, the labeling of
of some importance for biology, in particular, where speciaJtS leaves suffers from serious uncertainties, one may con-

enough to form contrasting clusters. While a strict ultra-confidence can still be retained for those observables detect-

metricity of correlations is an obvious oversimplificati@, N9 heterogeneity between subpopulations at parentages of
the hierarchy we found is likely to tolerate some deviationsorderm. (iv) A more detailed analysis, along the arguments
from this modelization hypothesis. detailed in Secs. IV and V, is then in order, at the cost of a

The second kind of results deals with consequences defined model implying values for the correlationss and a
mistakes in individual identities inside the population undercomparison of the spectrum of the correlation matrix with
statistical observation. Section Il defined “eigenmeasurethe average eigenvalug see Eq(27). For want of bounds
ments” invariant under subgroups of permutations, thosé@n the numper of label mistakes, on.Iy those obse_rvables de-
with a + sign in the signatures. The robustness of such afived from eigenvalues close ware likely to be reliable.
observable thus depends on the size of the subgroup and the
answer v=10g,G essentially identifies a compromise be-
tween the subgroup size and the fluctuation of the observ-
able. If fluctuation is retained as the only criterion, the het- The author is indebted to Alan Lapedes for a discussion of
erogeneity observable with maximum fluctuation seemsriterions for “best” observables.
preferable, as it creates the most demanding threshold of
significance when statistical deviations are found.

There could be situations where the number of mistakes APPENDIX: GENERALIZATION

in the labeling, while large, makes a small proportion of all 1,4 property that eigenvalues “at level—1" remain
possible permutations. A modified procedure of averaging,ji «at level G” and that eigenvectors, completed by ze-
over permutations, with larger weights for permutations;,eq exiend from level to level, is not restricted to binary

clgse to th_e identity, is then_necessary. A]ternately, Or'q)ranching. Consider for instance the ternary ultrametric ma-
might consider what happens if only a few eigensubspaces;;,

neighbors according to their labeis are mixed by the per-
turbations. This may mean replacing the minimizatiorgof

ACKNOWLEDGMENT

Eq. (25), by that of (N!) “'=p|(C—E)P|E)[%, with k>2. [Co C1 € C C Cp Cp Cp Cpf

We are investigating s_uch questions. _ C; Co C Cp Cp, C, Cp Cp Cp
All these considerations hold when only linear rearrange-

ments of variables are considered. Probabilistic averages of Ci C G € C C C G G

such heterogeneity observables vanish for the models consid- C, C; € C C; C; C, Cy Gy

ered in this paper, hence, significance depends upon experi-
mental deviations larger than the expected scales of fluctua-

tions. Such scales, in turn, depend on an underlying model, C € C € C C Cp Cp Cp
namely the values of the correlations. It is unknown whether C, C, C Cy, C, C» Co C; Cy
non linear observables define measurements which are less

model dependent. But it is likely that such non linear observ- Ca C2 C € C2 C2 C1 Co G
ables will show spurious correlations between one another, L C» C C, Cy Cy C C; C; Cg

and the question of disentangling them will rise again. This - (A1)
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and its diagonal and off-diagonal substructures, the subma‘other” eigenvector of7;. Returning tdZ,, one sees at once,
by a trivial argument using block matrix algebra, that the

trices
three extensionsa(,b,c,0,0,0,0,0,0), (0,0,8,b,c,0,0,0) and
Co Cp Cg C; C C (0,0,0,0,0,8,b,c) are eigenvectors of,, retaining as ei-
_ _ genvalue the corresponding eigenvatye-c, of 7.
T,=|C1 Co Ci| and N;=|C2 Co Cp|. (A2 This eigenvaluec,—c, is twofold degenerate fofTy,
Ci1 C; Co C, C» G hence sixfold degenerate f@p. For 7; a possible basis of

o the corresponding subspace consists of the vecters, (
It is trivial to observe that botly; and N; have the vector —1,0) and (1,0~ 1), making a two-dimensional represen-
(1,1,1) as an eigenvector with eigenvalag+2c,, and, tation of the mixed representation for the permutations of 3
moreover, thatV; is null in the orthogonal subspace spannedelements. A table of row eigenvectors and eigenvalues, of

by the other eigenvectors of;. Let (a,b,c) be any such reads,
|

"+1 -1 O 0 0 0 0 0 0 Co—C1 ]
+1 0 -1 O 0 0 0 0 0 Co—Cq
0 0 0 +1 -1 0 0 0 0 Co—Cq
0 0 o +1 0 -1 o0 0 0 Co—Cq

F=| O 0 0 0 0 0 41 -1 O Co—Cq (A3)

0 0 0 0 0 0O +1 0 -1 Co—Cq
+1 +1 41 -1 -1 -1 O 0 cp+2c;—3cy
+1 +1 +1 O 0 0 -1 -1 -1 cp+2c;—3cy

| +1 +1 +1 +1 +1 +1 +1 +1 +1 cp+2ci+6Cy]

The sum of the vectors in rows 1, 3 and 5 of this matrix generates the vectbr(1,0,+1,—1,0,+1,—1,0) which differs

from the vector ¢-1,+1,+1,—1,—1,—1,0,0,0) by just a permutation of components. The point is, the former vector belongs

to the subspace with eigenvalag— c4, while the latter belongs to that with eigenvalegt 2c, —3c,. The “indifference”

results of Sec. IV thus extends to this ternary case. It is easy to generalize such arguments to other degrees of ultrametricity.

micro, meso, and macroscopic approaches in physdged
by M. Fanneset al, Leuwen, Belgium, July 19-281993,
pp. 125-137.

[1] R. Rammal, G. Toulouse, and M. A. Virasoro, Rev. Mod.
Phys.58, 765(1985.
[2] G. Parisi, J. Phys. A3, L115(1980.

[3] B. Derrida and L. Peliti, Bull. Math. Biol53, 355(1991).

[4] A. S. Lapedes, B. G. Giraud, L. C. Liu, and G. D. Stormo

(unpublished
[5] B. G. Giraud, A. S. Lapedes, and L. C. Liu, Phys. Re\b&
6312(1998.

[6] B. Derrida, Non-self-averaging effects in sums of random vari-
ables, spin glasses, random maps and walksthree levels:

[7]1 M. L. Mehta, Elements of Matrix TheonSec. 7.5, Hindustan
Publishing Corgdl), Dehli-110007, 1977, pp. 97-99.

[8] A. T. Ogielski and D. L. Stein, Phys. Rev. Let5, 1634
(1985.

[9] R. Rammal, J. C. Angles d'Auriac, B. Doucot, J. Phys.
(France Lett. 46, L-945 (1985.



