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Independent statistical observables for ultrametric disordered populations
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It is not exceptional that a sample ofN random dataXi , i 51, . . . ,N contains ultrametric covariations,
namely the matrixC with matrix elementŝ XiXj&2^Xi&^Xj& is ultrametric. We define independent~decorre-
lated! ‘‘collective’’ observables by diagonalizing this matrix. Symmetry properties of such eigenvectors are
discussed. Often also, however, while the existence of an ultrametric tree is known, the degrees of parentage
of the data are unknown, because a random perturbation confuses the labeling of the leaves of the tree. We sort
out those observables which are more robust with respect to such labeling mistakes.@S1063-651X~99!08612-2#

PACS number~s!: 87.10.1e, 87.23.2n
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I. INTRODUCTION

Ultrametricity @1# is a useful concept in several fields
data analysis. For instance, in physics, overlaps of repl
for spin glasses most likely show, at low temperatures,
phenomenon of replica symmetry breaking@2#. In biology,
taxonomic or genetic trees may sometimes show, at l
approximately, ultrametric covariations@3–5#. More gener-
ally, every time one knows that random variables are
independent, deviations from the central limit theorem
very likely and may even become quite strong@6,5#. The
minimal precaution to be implemented is then to analy
such likely deviations and, furthermore, to rearrange the
grees of freedom into independent observables. When
linear rearrangements are considered, a list of uncorrel
observables is obtained by the diagonalization of the co
riation matrixC. ~As usual, this matrix is defined by its ele
mentsCi j 5^XiXj&2^Xi&^Xj&, where^ & denotes the proba
bilistic average with respect to the probability governing t
variablesXi .)

This paper is concerned with statistics in the special c
where any average property of each element of the sam
under study is the same for each element. This is an im
tant symmetry of many practical problems:^Xi& is a constant
m, independent ofi. Moreover, we restrict our subject t
those cases where the matrixC is ‘‘binary ultrametric,’’ be-
cause of the additional symmetries of such matrices. Th
symmetries will be reflected in special properties of t
eigenvectors, naturally. There are other ultrametricities t
‘‘binary’’ ones, but the binary scheme is not a severe rest
tion for biological models, at least.

Such results, however, are often devalued by a lack o
precise knowledge of the parentage relationships betwee
dividuals. While straight~symmetric! statistical means of in-
dividual properties across the whole sample are insensitiv
permutations between elements, measures of heteroge
between and across subgroups of the sample~families, su-
perfamilies, etc.! may loose significance when a proper l
beling of the leaves of the ultrametric tree is missing. S
groups become ill defined and measures of differen
between subgroups loose their relevance. There is thu
need for ‘‘collective observables,’’ which minimize labelin
errors.

This paper is organized as follows. Section II states
PRE 601063-651X/99/60~6!/7312~9!/$15.00
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model we are studying and the relevant notations. Section
contains the diagonalization ofC and lists several propertie
of its eigenvectors. Section IV investigates consequence
‘‘confusion of labels’’ in the sample under study and state
few theorems for minimizing the consequences of this c
fusion. Section V slightly restricts the model to a case,
spired by biology, where the problem of robustness can
solved analytically. Section VI, finally, contains a discussi
and a conclusion. An Appendix briefly investigates non
nary ultrametricity.

II. MODEL AND NOTATIONS

In the following, we consider binary trees only, as illu
trated by Fig. 1. Namely, the sample of degrees of freed
containsN52G elements, withG the number of ‘‘genera-
tions.’’ For notational simplicity, Fig. 1 shows three gener
tions only, G53, and the degrees of freedom are labe
s,t, . . . ,z instead ofX1 ,X2 , . . . ,X8, respectively.

Degreesu andv, e.g., have parentage 1, because of th
nearest common ancestor,o. In turn, e.g., degreesx and z
have parentage 2 because of ancestorm. And so on. Ultra-
metricity is implemented if, wheneverXi and Xj have par-
entagen, thenCi j depends onn only, Ci j 5cn .

For notational convenience again, we now slightly chan
the definition ofC, by addingm2 to all its matrix elements.
Namely, now,Ci j 5^XiXj& in the following. This adds a con

FIG. 1. Binary tree with 3 generations. For simplicity of th
model, each generation has the same lifetimeT.
7312 © 1999 The American Physical Society
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stantm2 to all the numberscn , without changing the defini-
tion of ultrametricity. We then assume that the degrees
freedom are normalized according to the condition,c0
[^Xi

2&51. This normalization identifies covariation wit
correlation. Then, forn>1, and naturally forn<G, the real
numberscn are arbitrary within the trivial constraint,ucnu
,1. In the case of Fig. 1, the matrixC then reads,

C353
1 c1 c2 c2 c3 c3 c3 c3

c1 1 c2 c2 c3 c3 c3 c3

c2 c2 1 c1 c3 c3 c3 c3

c2 c2 c1 1 c3 c3 c3 c3

c3 c3 c3 c3 1 c1 c2 c2

c3 c3 c3 c3 c1 1 c2 c2

c3 c3 c3 c3 c2 c2 1 c1

c3 c3 c3 c3 c2 c2 c1 1

4 . ~1!

Obviously, C is invariant under a large subgroup of th
permutation group ofN52G elements. This subgroup ha
‘‘parities’’ as factors, in the sense that such factors are p
mutationsP whose square is the identity permutation,P 2

5I. These are~i! N/2 parities P 1
p , p51, . . . ,N/2, that

switch the two members of a ‘‘n51 minifamily,’’ e.g., P 1
1

induces the exchangeX1↔X2, and P 1
N/2 induces the ex-

changeXN21↔XN , ~ii ! N/4 parities P 2
p , p51, . . . ,N/4

that switch the twon51 minifamilies of a ‘‘n<2 family,’’
but without disturbing the internal order within each min
family, e.g.,P 2

1 induces the exchange (X1X2)↔(X3X4), and
P 2

N/4 induces the exchange (XN23XN22)↔(XN21XN), and
so on, until~iii ! the ‘‘superparity’’PG , which exchanges, a
parentageG, the two ‘‘superfamilies’’ with population num-
bers 2G21 at inner parentagen<G21. For Fig. 1 this reads
~stuv![(X1 . . . XN/2)↔(wxyz)[(XN/211 . . . XN). The gen-
eralization to any value ofG is trivial.

In order to diagonalizeC the next Section, Sec. III, will
take advantage of the fact thatP 1

1 ,P 2
1 , . . . ,PG provide a

complete set of labels, classifying all the eigenstates. As
be seen in the sequel, any other list of ‘‘parities

P 1
p ,P 2

p8 , . . . ,PG gives the same labeling, hence we sh
use the shorter notationP1 ,P2 , . . . ,PG .

To avoid confusions in the wording used by this pap
we specify that three kinds of averages are considered~i!
probabilistic averageŝ &, governed by the~correlated! prob-
ability distribution which drives the set ofN degrees of free-
dom$Xi%, ~ii ! statistical means, namely weighted sums of
variablesXi , and~iii ! averages over permutations of the l
bels i. As will be seen in the following, the name ‘‘observ
able,’’ which we shall use for a statistical mean, should
clear enough. The notation̂& should also clarify what be
longs in ~i!. Finally, we retain an explicit factor (N!) 21

whenever permutation averaging occurs; this factor sho
make a convenient signature for~iii !.

III. EIGENOBSERVABLES AND THEIR
FOURIER INTERPRETATION

The following list of almost obvious results, without de
tailed proofs, makes a constructive derivation of the eig
vectors and eigenvalues ofC.
f

r-

ill

l

,

e

e
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-

Case G51: N52, and onlyP1 exists. Then,C reads,

C15F 1 c1

c1 1 G , ~2!

and the matrix of row~left! eigenvectors, completed by th
corresponding eigenvalues ofC andP1, respectively, reads,

E15F11 11 11c1 1

11 21 12c1 2
G . ~3!

Case G52: N54, and nowP2 joins P1. Then

C25F 1 c1 c2 c2

c1 1 c2 c2

c2 c2 1 c1

c2 c2 c1 1

G , ~4!

and the matrix of row eigenvectors, completed by the cor
sponding eigenvalues ofC, P1 andP2, respectively, reads,

E25F11 11 11 11 11c112c2 1 1

11 11 21 21 11c122c2 1 2

11 21 11 21 12c1 2 1

11 21 21 11 12c1 2 2

G .

~5!

This table of eigenvectors is obtained by a duplication of
previous table of eigenvectors and then, as indicated byP2, a
symmetrization and an antisymmetrization. An equivale
table of eigenvectors is

E285F11 11 11 11 11c112c2 1 1

11 11 21 21 11c122c2 1 2

11 21 0 0 12c1 2

0 0 21 11 12c1 2

G ,

~6!

where degenerate eigenvectors are simplified, at the co
their P2 labels. This form, Eq.~6!, better illustrates the con
struction of eigenvectors and eigenvalues ‘‘at levelG’’ when
those ‘‘at levelG21’’ are known. The key of the derivation
besides the labeling parities already mentioned, is the
that a matrix with constant matrix elements is essentia
null, except for its only nondegenerate eigenvector, of
form (1,1, . . . ,1).

Case G53: N58, and nowP3 comes in. ForC we refer
to Eq. ~1!. The matrix of row~left! eigenvectors, completed
by the corresponding eigenvalues ofC,P1 ,P2 and P3, re-
spectively, reads
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E353
11 11 11 11 11 11 11 11 11c112c214c3 1 1 1

11 11 11 11 21 21 21 21 11c112c224c3 1 1 2

11 11 21 21 11 11 21 21 11c122c2 1 2 1

11 11 21 21 21 21 11 11 11c122c2 1 2 2

11 21 11 21 11 21 11 21 12c1 2 1 1

11 21 11 21 21 11 21 11 12c1 2 1 2

11 21 21 11 11 21 21 11 12c1 2 2 1

11 21 21 11 21 11 11 21 12c1 2 2 2

4 . ~7!

This table is obtained by a duplication of the previous table of eigenvectors and then, as indicated byP3, a symmetrization and
an antisymmetrization. An equivalent table of row eigenvectors is

E3853
11 11 11 11 11 11 11 11 11c112c214c3 1 1 1

11 11 11 11 21 21 21 21 11c112c224c3 1 1 2

11 11 21 21 0 0 0 0 11c122c2 1 2

0 0 0 0 11 11 21 21 11c122c2 1 2

11 21 0 0 0 0 0 0 12c1 2

0 0 11 21 0 0 0 0 12c1 2

0 0 0 0 11 21 0 0 12c1 2

0 0 0 0 0 0 11 21 12c1 2

4 , ~8!
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where degenerate eigenvectors are simplified, at the co
their P3 labels. For those eigenvectors which actually rel
to the G51 substructure, the simplification also erases
P2 labels. This form, Eq.~8!, again illustrates the construc
tion of eigenvectors and eigenvalues at levelG when those at
level G21 are known. The key of the derivation, besides
labeling parities, is again the fact that a matrix with const
matrix elements is essentially null, except for its only n
degenerate eigenvector, the ‘‘fully symmetric’’ set of co
stant components (1,1, . . . ,1).

General case: N52G. ~i! The eigenvalueE15c02c1 oc-
cursN/2 times. The corresponding eigenvectors are eas
list if one uses the simpler form introduced by Eqs.~6! and
~8!. Namely the first of them is (11,21,0,0, . . . ,0,0) and
the other ones are deduced from this one by all the per
tationsP 2

p which exchange ‘‘n51 minifamilies.’’ ~ii ! Then
the eigenvalueE25c01c122c2 occurs N/4 times, with
eigenvectors the pattern (11,11,21,21,0,0, . . . ,0,0) and

all the vectors induced by the exchangesP 3
p8 of ‘‘ n<2

families.’’ ~iii ! In turn, the degree of degeneracy of the
genvalueE35c01c112c224c3 is 2G23. The correspond-
ing eigenvectors derive from the pattern (11,11,11,11,

21,21,21,21,0,0, . . . ,0,0) by all the exchangesP 4
p9 of
of
e
e

e
t

to

u-

-

‘‘ n<3 families.’’ And so on, until one reaches~iv! the non-
degenerate eigenvalueEG5c01(n51

G212n21cn22G21cG ,
with eigenvector a ‘‘one node’’ sequence ofN/2 positive
components followed byN/2 negative components, (11,
11, . . .11,21,21 . . . ,21). ~v! Finally, the ~fully sym-
metric! vector with equal components is again a nondeg
erate eigenvector, with eigenvalueE05c01(n51

G 2n21cn .
For the sake of definiteness and future reference, we

here the projectors which, forG53, define the various sub
spaces,

Q E05
1

8 3
11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11

4 ,

~9!
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Q E15
1

2 3
11 21 0 0 0 0 0 0

21 11 0 0 0 0 0 0

0 0 11 21 0 0 0 0

0 0 21 11 0 0 0 0

0 0 0 0 11 21 0 0

0 0 0 0 21 11 0 0

0 0 0 0 0 0 11 21

0 0 0 0 0 0 21 11

4 ,

~10!

Q E25
1

4 3
11 11 21 21 0 0 0 0

11 11 21 21 0 0 0 0

21 21 11 11 0 0 0 0

21 21 11 11 0 0 0 0

0 0 0 0 11 11 21 21

0 0 0 0 11 11 21 21

0 0 0 0 21 21 11 11

0 0 0 0 21 21 11 11

4 ,

~11!

Q E35
1

8 3
11 11 11 11 21 21 21 21

11 11 11 11 21 21 21 21

11 11 11 11 21 21 21 21

11 11 11 11 21 21 21 21

21 21 21 21 11 11 11 11

21 21 21 21 11 11 11 11

21 21 21 21 11 11 11 11

21 21 21 21 11 11 11 11

4 .

~12!

In view of their trivial ‘‘growth’’ block structures, the rules
governing the construction of such projectors are obvio
Let the matrix elements of such operators be denoted
QEni j . The quantity

Ln5 (
i , j 51

N

XiQEni j Xj , ~13!

is an observable which obviously tells how much a given
of Xi ’s belongs to the subspace with eigenvalueEn . The
sum rule,

(
n51

G

Ln51, ~14!

obtains identically.
It is useful at this stage to reinstate the symmetrizati

and antisymmetrizations prescribed by the various pari
P n

p of the problem. This alternate representation of
eigenvectors replaces their zeroes by either11 or 21 and
recovers the signatures which generalize those shown
Eqs.~5! and ~7!.
s.
y

t

s
s

e
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Two properties of this representation are then obvious~i!
except for the fully symmetric eigenvector, all the oth
eigenvectors, obtained by such rearrangements in their
spective degenerate eigenspace, show an equal numb
positive and negative components, and can thus be tr
formed into one another by suitable permutations of leaf
bels, and~ii ! given a signature read from left to right, corre
sponding to the ordered listP1 ,P2 , . . . ,PG , the first
‘‘minus’’ sign of the signature specifies the eigenvalue. T
existence of a representation of eigenvectors ‘‘without
roes,’’ see again, e.g., Eqs.~5! and ~7!, is of importance for
the next section, Sec. IV. This representation, incidentally
nothing but the well known set of Hadamard matrices@7#.
Such matrices can be defined by two constraints:~i! be made
of orthogonal vectors,~ii ! have matrix elements61 only.

It must be recalled here that the present Section, Sec
was dedicated to the diagonalization ofC, for a linear decor-
relation of the degrees of freedomXi . It is only fitting that
systematically one of the eigenvectors, the fully symme
pattern (1,1, . . . ,1), defines as a suitable collective obser
able, after an obvious normalization, the statistical me
( iXi /N. More interesting, maybe, is the fact that the oth
eigenvectors define ‘‘heterogeneity observables’’ of the fo
( i PIXi2( j PJXj . Here I and J are complementary subse
of N/2 leaf labels, and these subsets depend upon the ei
vector, naturally. Assume that closer parentage indu
greater covariation, namely, thatc0>c1>c2>•••>cG .
This induces an eigenvalue hierarchyE1<E2<•••<EG . In
so far as strong eigenvalues of the covariation matrix mi
be favored, the last~but one! eigenvector thus seems to be
favorite, all the more so because itsEG is not degenerate
The uniqueness of this eigenvector might make the contr

OG5(
i 51

N/2

Xi2 (
j 5N/211

N

Xj , ~15!

between the superfamiliesn<G21 a preferred statistica
measure of heterogeneity.

Let uis , i 51, . . . ,N be the components of a ‘‘no zero’
heterogeneity eigenvector, identified by its signatures. As
stated above, the knowledge ofs defines also the eigenvalu
E. The observable

Os5(
i 51

N

uisXi ~16!

is nothing but the scalar product of the observed pattern
Xi ’s with the eigenvector. This scalar product has a vani
ing probabilistic averagêOs&5m( i 51

N uis , sincem5^Xi&
does not depend oni and since the21 components of the
eigenvector exactly compensate its11 components. In ac-
tual measurements, deviations from this prediction^Os&
50 must, to be statistically significant, be compared with
square root of the variance,

^O s
2&5(

i 51

N

(
j 51

N

uis^XiXj&uj s5NE. ~17!

Clearly, the choice of the highest eigenvalue~s!, namely the
non degenerateEG if the abovementioned hierarchy occur
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creates the most demanding significance threshold. In a s
slightly analogous to that of singular value decompositio
where largest eigenvalues are preferred, this choice m
justify a preference for the observableOG .

To summarize this section, the diagonalization of the c
relation matrix defines a Fourier analysis well suited to
situation created by ultrametric correlations. The mod
upon which field observations are expanded are defined
the eigenvectors of the correlation matrix, naturally, and
corresponding decorrelated observables, see Eq.~16! are,
when multiplied by an obviousN21/2 normalization, the as-
sociated Fourier coefficients. From the patterns of61 com-
ponents that have been discussed in this section, it is c
that finer structures~high frequencies in the oscillation of th
61 components! relate to lower eigenvalues. An observe
however, may resent the slight ambiguity in the informati
carried by such coefficients, because most eigenvalues
degenerate, and thus the eigenvectors are not uniquely
fined and only the eigensubspaces are defined without a
guity. There is then no difficulty in lumping together th
squares of the Fourier coefficients pertaining to each deg
erate eigenspace, see Eq.~13!. More explicitly, according to
Eqs. ~13! and ~16!, given all those observablesOs , which
belong to a given degenerate subspace with eigenvalueEn ,
this lumping reads,

1

N (
suE(s)5En

@Os#25Ln . ~18!

IV. CONSEQUENCES OF LABELING CONFUSION

The previous section, Sec. III, achieved more than
derivation of independent observablesOs , defined by Eq.
~16!. It also found a hierarchy between them. Namely
sequence ofXi ’s can be analyzed in terms of Fourier coef
cientsN21/2Os , relating to contrasts between minifamilie
or families, . . . or superfamilies. The zoology of eigensta
makes this statement transparent, according to the ‘‘frequ
cies’’ at which the61 components of the eigenvectors o
cillate, or, equivalently, according to which~degenerate!
subspace~s! such eigenstates belong. Hence one may de
in the Xi data fine structures pertaining to the influence
minifamilies, . . . , superfamilies.

How reliable is this detection based on the considera
of such Fourier coefficients? The decorrelation has m
mized the roˆle of statistical fluctuations, indeed, but anoth
problem may arise, namely labeling confusion. In practi
situations of sample analysis, the existence of a tree ma
known to be likely, but the labeling of the tree leaves~the
elements of the sample under study! is either badly known or
contains at least some errors. Accordingly, there are mista
in the parentages between individuals. There exist non lin
observables for measuring the sample heterogeneity, suc
( i , j (Xi2Xj )

2, which are as insensitive to a permutation
labels as the linear mean(Xi /N. But, in the realm of linear
rearrangements, once we disregard this symmetric mean
servable, perfect robustness is not available. Hence the q
tion: among the ‘‘heterogeneity’’ linear combinations d
fined by the eigenvectors ofC, is there a preferable choic
when a random permutation perturbs the labeling?

First question, first criterion: Let uE& be an eigenstate o
irit
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C, with eigenvalueE. The ‘‘symmetric’’ uE0& being ex-
cluded, a random permutationP of components~differing
from the identity! actually convertsuE& into a different pat-
tern PuE&. Is the new pattern still an eigenstate, defining
legitimate observable? A first criterion of the robustness
uE& is thus the fluctuation~mean square deviation!,

f ~PuE&)5ŠEuP21@C2^EuP21CPuE&#2PuE‹

5^EuP21C 2PuE&2~^EuP21CPuE&!2. ~19!

Indeed, a necessary and sufficient condition for eigenstat
the cancelation of this fluctuation.

Actually, sinceP is unknown, a best choice should resu
from minimizing the average off over all permutations,

F~ uE&)5~N! !21(
P

@^EuP21C 2PuE&2~^EuP21CPuE&!2#.

~20!

Consider the ‘‘no zero’’ representation of eigenvecto
see again, e.g., Eqs.~5! and ~7!. As stated earlier for this
Hadamard representation, given two distinct ‘‘heteroge
ity’’ eigenvectorsuE& andum&, there is always a permutatio
Q relating them,um&5QuE&. Then, since the summation
upon permutationsP and permutationsP85QP make the
same summation, one finds two ‘‘indifference theorems,’

~N! !21(
P

^muP21CPum&5~N! !21(
P

^Eu~PQ!21CPQuE&

5~N! !21(
P8

^EuP821CP8uE&,

~21!

F~ um&)5F~QuE&)5~N! !21(
P

@^Eu~PQ!21C 2PQuE&

2~^Eu~PQ!21CPQuE&!2#

5~N! !21(
P8

@^EuP821C 2P8uE&

2~^EuP821CP8uE&!2#5F~ uE&). ~22!

These results, Eqs.~21! and~22!, may be summarized by th
statement that the permutation average value ofC is the same
for a perturbeduE& and for any other perturbed eigensta
um&, and that the same equality is true for the fluctuation
C. In other words, once perturbed by an arbitrary, unkno
permutation of its componentsuis , no heterogeneity observ
able is preferable for robustness, whether one considers
expectation value ofC or the corresponding fluctuation. Ou
first criterion, namely the approximate conversion of
eigenstate into another one, therefore fails to suggest an
servable more robust than the others. This failure is not
dramatic, however, because, anyhow, the replacement o
eigenvector by another one might induce the replacemen
an eigensubspace by another one, confusing the interp
tion of information in terms of lower and higher ‘‘frequen
cies.’’ The question of eigensubspace robustness will
studied later in the present section.
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Paradoxically, a non diagonal form of Eq.~21! states that,
even perturbed, the eigenvectors are still eigenstates, in
sense that the operator,

A5~N! !21(
P

P21CP, ~23!

has vanishing off diagonal matrix elements between th
Consider indeed again two heterogeneity eigenvectorsus&
and ut&, wheres andt denote their signatures and not ju
their eigenvalues, the latter being ambiguous because o
generacies. LetR be one of the ‘‘parities,’’ which make thes
signature differ, for instanceRus&5us&, while Rut&52ut&.
Then, because it makes no difference whether one s
uponP or uponPR, one obtains,

N! ^tuAus&5(
P

^tuP21CPus&5(
P

^tu~PR!21CPRus&

5(
P

^tuR21P21CPus&52(
P

^tuP21CPus&.

~24!

Hence, ^tuAus&50. A similar statement holds forC 2,
naturally. Hence, ‘‘off diagonal fluctuations’’ also vanish.

Second question, second criterion: Slightly modifying Eq.
~20! we now take advantage of the eigenvalue of the can
date and ask: does the permutation, which perturbs the ei
vector, respect the eigenvalue? In other words, does the
servable, while disturbed, belong to the same eigensubs
and essentially yields a similar information? One possi
answer lies in a minimization of the averaged square no
(N!) 21(Pu(C2E)PuE&u2. This amounts to minimize,

G5(
P

@^EuP21C 2PuE&22E^EuP21CPuE&1E2#.

~25!

Here eigenvectors are square renormalized to unity, nam
the ‘‘no zero’’ representation becomes multiplied byN21/2.

Because we found that both theC 2 and theC terms are
indifferent to the choice of theeigenvectoruE&, the only way
to minimizeG is to choose thateigenvalue Ewhich is nearest
to the numbera5^EuAuE&. In the eigensubspace specifie
by the optimalE under search, any~normalized! vector will
then make an optimal observable.

To calculatea we take advantage of the huge degenera
of degreeN2152G21, of A and evaluatea with respect to
the simplest possible relevant vector of the correspond
subspace. This vector is, in the representation with zer
the normalized vector 221/2(1,21,0,0, . . . ,0),with two non-
vanishing components only. Thena reads

a5
1

2N! (
P

@~P21CP!112~P21CP!122~P21CP!21

1~P21CP!22#. ~26!

Here the numbers (P21CP) i j are the matrix elements ofC
under the perturbations~permutations! P. Diagonal matrix
elements remain unchanged, and equal toc0, under these
he
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permutations. Under the same permutations, off diago
matrix elements sample equally all the off diagonal eleme
of the symmetric, ultrametric, initialC. The result, an averag
eigenvalue, reads

a5c02
1

2G21
(
n51

G

2n21cn . ~27!

To summarize this section, we found that the most rob
observables under labeling confusion are those whose ei
values are as close as possible to the numbera defined by
Eq. ~27!. The next section, Sec. V, shows a case where
easy to locatea with respect to the eigenvalues.

V. ROBUSTNESS OF HETEROGENEITY
MEASUREMENTS IN A GENETIC MODEL

Imagine a viral epidemy in a large geographical area,
vided into two ‘‘subcontinents’’A andB. Assume each sub
continent to be divided into two ‘‘regions,’’ the regions spli
ting in turn into ‘‘plains’’ versus ‘‘mountains,’’ then the
mountains splitting into two ‘‘valleys’’ while the plains
show two main ‘‘rivers basins.’’ And so on until ‘‘villages’’
and ‘‘clans’’ within villages, ‘‘families’’ within clans, etc.
One suspects, conjecture~i!, that the virus actually splits into
two distinct classes of strains and, furthermore, that a st
might be more specific toA while the other might pertain
more toB. One also suspects, conjecture~ii !, that some so-
cial structures and mechanisms within ‘‘villages’’ may crea
additional contrasts and separate strains on a shorter s
However, the concerned populations travel enough to m
somewhat dubious any assessment such as ‘‘this individ
belongs to this subcontinent, this region, etc., this family
Hence, for the discovery of strains with a sufficient contra
is the observable( i PAXi2( i PBXi significant, or should one
use a different observable( i PIXi2( i PJXi whereI andJ are
complementary subsets acrossA and B? Moreover, in the
search for evidences of fine structure mechanisms under
jecture~ii !, when a few ‘‘Fourier coefficients’’ turn out to be
dominant, do they relate to a reasonably robust eigenspa

For this question, we consider a genetic model used
lier @5# where the matrix elements ofC are most simple,cn

5pn. The parameterp is a positive number, slightly smalle
than 1. This model was used for strains of DNA, or RNA,
proteins, with individuals duplicating after a constant lif
time T for each generation. During this lifetime, a proper
X561 of each individual drifts stochastically, in such a wa
that two individualsa and b starting identical,Xa5Xb , at
one of the nodes of the tree, see Fig. 1, finish with a co
lation ^XaXb&5p just before duplicating. The normalizatio
of such variablesX reads, obviously,c05^X2&5p051.

The list of eigenvalues then reads

E1512p,E2511p22p2, . . . ,

Em511
p@~2p!m2121#

2p21
2p~2p!m21, . . . ,

EG511
p@~2p!G2121#

2p21
2p~2p!G21, ~28!
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while a reads

a512
p@~2p!G21#

~2G21!~2p21!
. ~29!

Expansions ofEm anda in the vicinity of p51 give, respec-
tively,

Em5~2m21!~12p!1O~12p!2, and

a5F G

1222G
21G ~12p!1O@~12p!2#. ~30!

As soon as 22G can be neglected with respect to 1, the b
choice, according to the second criterion of Sec. V, cor
sponds to that integerm closest to log2 G. This is valid, how-
ever, for values ofp close to 1 only. As shown by Fig. 2
which plotsa for G532 andG516, with E5 , E4 , E3, and
E2 as functions ofx512p, the best choice depends onp.
Indeed, whenp is close to 1,E5 is a good approximation o
a if G532. The same is true forE4 if G516. Forp.0.93,
and for p.0.81, however, better approximates ofa are E4
andE3, respectively, ifG532. ForG516, in turn,E3 coin-
cides witha if p.0.82. Forp.0.5, the best approximate o
a seems to beE2, independently fromG, but such extreme
values ofp are not of a great practical significance. For
practical purposes,p is quite close to 1.

The following figure, Fig. 3, lists the results obtained wi
104 independent runs of the model whenG58, namely, 256
individuals, andp5122.2531022. An artificial mutation is
enforced during the first ‘‘generation,’’ namely, if the not
tions of Fig. 1 are used,Xl51 andXm521. With such an
initial condition, which differentiatesA from B, conjecture
~i! should be observable by means ofO8 up to some extent a
least, even after 7 levels of duplication and mutations,
after a reasonable amountZ of random transpositions of in
dividuals at the end.

Except for this initial condition, flips61 are random,
with probability «5 1

2 (12p)1/250.075. Generation #G22
56, however, is artificially modified, in order to superim

FIG. 2. Genetic model. Plots of the average eigenvaluea for
G532 ~upper full line! andG516 ~lower full line!, plots of eigen-
valuesE5 ~long dashed line!, E4 ~dashed line!, E3 ~short dashed
line! and E2 ~dotted line!, as functions of the mutation rate,x51
2p.
t
-

l

d

pose data compatible with conjecture~ii !. For this, with
probability 25%, the pairsX2i 21 ,X2i normally generated in
this 6th generation are replaced by pairs11,21. Such pairs,
two generations later, are meant to induce octuplets of
form 11,11,11,11,21,21,21,21, easily detectable by
an observableO3, unless they have been destroyed by mu
tions and/or population reshuffling.

Except for their identical first generations, the 104 runs
differ by their random mutations along the tree, by the ra
dom enforcement of11,21 pairs at generation #6, and b
the Z random transpositions of leaves of the tree. The co
generating such runs is available upon request.

The full line curve shown in Fig. 3 plots, as a function
Z, the value, averaged over the 104 runs, taken by the ob-
servableO8. In a transparent notation, this observable m
be listed as@1281,1282#, naturally. With p5122.25
31022, the corresponding eigenvalue and square root of
variance ~SRV! are 5.0 and 36., respectively. Then th
dashed line curve in Fig. 3 shows values taken by the s
plest among observablesO3, namely, in the same transpare
notation again, @41,42,41,42, . . . ,41,42# ~32 se-
quences11112222). In order to appraise signifi-
cance, the average value ofO3 must be scaled against a
SRV 6.2, coming from eigenvalue 0.15.

The robustness ofO3 compared to that ofO8 is transpar-
ent from Fig. 3. It will be noticed that the noise brought b
the random transpositions does not prevent the kind of F
rier analysis, brought by observablesOs , from being effi-
cient a long time, since a simultaneous detection of b
modes #8 and #3 is still possible whenZ.50, compared to
a population of 256 here. But beyondZ.50, average values
of O8, compared toN1/2E8, become too small, whileO3
remains reliable a long way still.

Rather than using a specific eigenvector for testing rob
ness, one could also consider, for a similar detection of c
trast~heterogeneity! modes, the projectorsQ En on eigensub-
spaces for each~degenerate! eigenvalueEn , naturally. It is
likely that such projectors would show the same robustne
because of their invariance groups. The present section,
V, however, already gives sufficient evidence for the hier
chy of robustness created by the second criterion discuss

FIG. 3. ForG58, average values ofO8 ~full line curve! andO3

~dashed curve!, as functions of the numberZ of final transpositions
of individuals in the population. Horizontal full line: confidenc
threshold~variance, see Eq.~17!! for O8. Dashed horizontal line:
the same forO3.
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the end of the previous section, Sec. IV. We retain the qu
tion of projector robustness for a further study.

VI. DISCUSSION AND CONCLUSION

There are two kinds of results in this paper. The first ki
deals with disentangling correlated degrees of freedom
order to define a set of ‘‘collective’’ observables, better am
nable to statistical observations. The idea of correlation m
trix diagonalization is not original, nor is new, at least for t
representation with zeroes@8#, the zoology of the eigenvec
tors and eigenvalues of ultrametric matrices. But the resu
in terms of two groups of observables, the symmetric sta
tical mean on the one hand, and a large set of heterogen
observables on the other hand, are more interesting. Ind
there emerges a natural hierarchy of such heterogeneity
servables: depending on the eigensubspace retained fo
observable, one measures heterogeneity within ‘‘minifa
lies,’’ or ‘‘families,’’ etc. each scale being characterized by
maximum degree of parentage,n. All told, this paper tells
that only a few selected lists of1 and2 signs define prope
measures( i PIXi2( j PJXj of heterogeneity. This question i
of some importance for biology, in particular, where spec
tion may occur if a population becomes heterogene
enough to form contrasting clusters. While a strict ult
metricity of correlations is an obvious oversimplification@9#,
the hierarchy we found is likely to tolerate some deviatio
from this modelization hypothesis.

The second kind of results deals with consequence
mistakes in individual identities inside the population und
statistical observation. Section III defined ‘‘eigenmeasu
ments’’ invariant under subgroups of permutations, tho
with a 1 sign in the signatures. The robustness of such
observable thus depends on the size of the subgroup an
answer n. log2G essentially identifies a compromise b
tween the subgroup size and the fluctuation of the obs
able. If fluctuation is retained as the only criterion, the h
erogeneity observable with maximum fluctuation see
preferable, as it creates the most demanding threshol
significance when statistical deviations are found.

There could be situations where the number of mista
in the labeling, while large, makes a small proportion of
possible permutations. A modified procedure of averag
over permutations, with larger weights for permutatio
close to the identity, is then necessary. Alternately, o
might consider what happens if only a few eigensubspa
neighbors according to their labelsn, are mixed by the per-
turbations. This may mean replacing the minimization ofG,
Eq. ~25!, by that of (N!) 21(Pu(C2E)PuE&uk, with k.2.
We are investigating such questions.

All these considerations hold when only linear rearran
ments of variables are considered. Probabilistic average
such heterogeneity observables vanish for the models con
ered in this paper, hence, significance depends upon ex
mental deviations larger than the expected scales of fluc
tions. Such scales, in turn, depend on an underlying mo
namely the values of the correlations. It is unknown whet
non linear observables define measurements which are
model dependent. But it is likely that such non linear obse
ables will show spurious correlations between one anot
and the question of disentangling them will rise again. T
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problem is also under consideration.
In practice, the methodology advocated by this pa

boils down to the following recipe:~i! When there is a rea
sonable motivation for coding experimental observations
terms of stochastic variables,Xi561, making the leaves o
an ultrametric binary tree withG generations, decide on a s
of such labelsi according to reasonable assumptions ab
parentage relationships.~ii ! Then take advantage of the fa
that the eigenstates and eigenprojectors of the correla
matrix do not dependon its matrix elementscn . Obtain
eigenstates and projectors from Sec. III. Hence, calculate
Fourier coefficientsN21/2Os , see Eq.~16!. Or at least cal-
culate the projector expectation valuesLm , see Eq.~13!.
Because of the sum rules, Eqs.~14! and ~18!, the global
heterogeneity of the sampled population is estimated by
number 12L0. It may happen that the ‘‘heterogeneity
Fourier coefficients orL ’s cluster in two groups, namely
‘‘small ones’’ and ‘‘larger ones.’’~iii ! If so, the ‘‘larger
ones’’ indicate specific heterogeneities inside substructu
of the sampled population. Such heterogeneities can
trusted if the labeling is believed to be accurate. If, howev
given G generations in the ultrametric graph, the labeling
its leaves suffers from serious uncertainties, one may c
sider integersm close to log2 G, and a qualitative amount o
confidence can still be retained for those observables de
ing heterogeneity between subpopulations at parentage
orderm. ~iv! A more detailed analysis, along the argumen
detailed in Secs. IV and V, is then in order, at the cost o
refined model implying values for the correlationscn’s and a
comparison of the spectrum of the correlation matrix w
the average eigenvaluea, see Eq.~27!. For want of bounds
on the number of label mistakes, only those observables
rived from eigenvalues close toa are likely to be reliable.
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APPENDIX: GENERALIZATION

The property that eigenvalues ‘‘at levelG21’’ remain
valid ‘‘at level G’’ and that eigenvectors, completed by z
roes, extend from level to level, is not restricted to bina
branching. Consider for instance the ternary ultrametric m
trix,

T253
c0 c1 c1 c2 c2 c2 c2 c2 c2

c1 c0 c1 c2 c2 c2 c2 c2 c2

c1 c1 c0 c1 c2 c2 c2 c2 c2

c2 c2 c1 c0 c1 c1 c2 c2 c2

c2 c2 c2 c1 c0 c1 c2 c2 c2

c2 c2 c2 c1 c1 c0 c2 c2 c2

c2 c2 c2 c2 c2 c2 c0 c1 c1

c2 c2 c2 c2 c2 c2 c1 c0 c1

c2 c2 c2 c2 c2 c2 c1 c1 c0

4 ,

~A1!
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and its diagonal and off-diagonal substructures, the sub
trices

T15F c0 c1 c1

c1 c0 c1

c1 c1 c0

G and N15F c2 c2 c2

c2 c2 c2

c2 c2 c2

G . ~A2!

It is trivial to observe that bothT1 and N1 have the vector
(1,1,1) as an eigenvector with eigenvaluec012c1, and,
moreover, thatN1 is null in the orthogonal subspace spann
by the other eigenvectors ofT1. Let (a,b,c) be any such
d.

o

ri
a-‘‘other’’ eigenvector ofT1. Returning toT2, one sees at once
by a trivial argument using block matrix algebra, that t
three extensions (a,b,c,0,0,0,0,0,0), (0,0,0,a,b,c,0,0,0) and
(0,0,0,0,0,0,a,b,c) are eigenvectors ofT2, retaining as ei-
genvalue the corresponding eigenvaluec02c1 of T1.

This eigenvaluec02c1 is twofold degenerate forT1,
hence sixfold degenerate forT2. For T1 a possible basis o
the corresponding subspace consists of the vectors (11,
21,0) and (11,0,21), making a two-dimensional represe
tation of the mixed representation for the permutations o
elements. A table of row eigenvectors and eigenvalues oT2
reads,
longs

metricity.
F253
11 21 0 0 0 0 0 0 0 c02c1

11 0 21 0 0 0 0 0 0 c02c1

0 0 0 11 21 0 0 0 0 c02c1

0 0 0 11 0 21 0 0 0 c02c1

0 0 0 0 0 0 11 21 0 c02c1

0 0 0 0 0 0 11 0 21 c02c1

11 11 11 21 21 21 0 0 0 c012c123c2

11 11 11 0 0 0 21 21 21 c012c123c2

11 11 11 11 11 11 11 11 11 c012c116c2

4 . ~A3!

The sum of the vectors in rows 1, 3 and 5 of this matrix generates the vector (11,21,0,11,21,0,11,21,0) which differs
from the vector (11,11,11,21,21,21,0,0,0) by just a permutation of components. The point is, the former vector be
to the subspace with eigenvaluec02c1, while the latter belongs to that with eigenvaluec012c123c2. The ‘‘indifference’’
results of Sec. IV thus extends to this ternary case. It is easy to generalize such arguments to other degrees of ultra
s.
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